新足迹

 找回密码
 注册

精华好帖回顾

· 海盗的七宗罪(Terror on the Seas)6.15更新 索马里重建海军 (2009-6-9) 孔武 · French Forest路考一次过 经验洒泪大分享 (2013-11-15) calois
· 我的生日餐 · 烤鱼、蚂蚁上树、金银蒜开边虾… (2020-9-23) ayeeda · 说说我溜猫的经历.-照片已经上了 (2009-4-6) suel
Advertisement
Advertisement
查看: 1642|回复: 4

[NSW] 请教数学好的同学啊,来帮忙做个题 [复制链接]

发表于 2023-3-4 21:21 |显示全部楼层
此文章由 missdrafter 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 missdrafter 所有!转贴必须注明作者、出处和本声明,并保持内容完整
The polynomial p(x) has a remainder of -2 when divided by x-2 and has a reminder of 4 when devided by x+1, find the reminder when p(x) is divided by (x-2)(x+1).
Advertisement
Advertisement

发表于 2023-3-4 21:29 来自手机 |显示全部楼层
此文章由 zw_323 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 zw_323 所有!转贴必须注明作者、出处和本声明,并保持内容完整
Let's use the remainder theorem to solve this problem. According to the theorem, when a polynomial P(x) is divided by x-a, the remainder is P(a).

Given that the polynomial p(x) has a remainder of -2 when divided by x-2, we have:

p(2) = -2

Similarly, when p(x) is divided by x+1, the remainder is 4. Thus:

p(-1) = 4

Now, let's use these two equations to find the remainder when p(x) is divided by (x-2)(x+1). We can use the Chinese remainder theorem to combine the remainders for the two divisors.

Since (x-2) and (x+1) are coprime, we can find two constants a and b such that:

a(x+1) + b(x-2) = 1

Solving for a and b, we get a = 1/3 and b = -1/3.

Now, the remainder when p(x) is divided by (x-2)(x+1) can be expressed as:

p(x) = Q(x)(x-2)(x+1) + r(x)

where Q(x) is the quotient, and r(x) is the remainder we want to find.

We can use the remainders we already know to set up two equations:

r(2) = p(2) = -2

r(-1) = p(-1) = 4

We can solve for the remainder r(x) by combining these two equations:

r(x) = p(x) - Q(x)(x-2)(x+1)

r(2) = p(2) - Q(2)(2-2)(2+1) = -2 - 0 = -2

r(-1) = p(-1) - Q(-1)(-1-2)(-1+1) = 4 - 0 = 4

Thus, the remainder when p(x) is divided by (x-2)(x+1) is -2x + 2.

评分

参与人数 1积分 +6 收起 理由
missdrafter + 6 谢谢解惑!

查看全部评分

发表于 2023-3-4 21:44 |显示全部楼层
此文章由 不是小胖子 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 不是小胖子 所有!转贴必须注明作者、出处和本声明,并保持内容完整
本帖最后由 不是小胖子 于 2023-3-4 22:11 编辑

let p(x) = (q(x))(x-2)(x+1) + ax + b

then:
(ax+b) ÷ (x-2) = a ... -2
(ax+b) ÷ (x+1) = a ... 4

∴ b = -2a - 2 = a + 4

∴ a = -2, b = 2; remainder is -2x + 2

评分

参与人数 1积分 +6 收起 理由
missdrafter + 6 谢谢解惑!

查看全部评分

发表于 2023-3-4 22:34 来自手机 |显示全部楼层
此文章由 iope23 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 iope23 所有!转贴必须注明作者、出处和本声明,并保持内容完整
这是几年级的题?

发表于 2023-3-4 23:17 来自手机 |显示全部楼层
此文章由 act_nan 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 act_nan 所有!转贴必须注明作者、出处和本声明,并保持内容完整
VCE内容

发表回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Advertisement
Advertisement
返回顶部