新足迹

 找回密码
 注册

精华好帖回顾

· 买回来!霸道购买实录 (2013-8-25) tefal · 日式pizza——Okonomiyaki(お好み焼き) (2010-2-2) edith921
· 发动机半大修,自己动手维修cylinder head (2013-7-1) 大球球 · Broome to Darwin - adventurous trip through Kimberley range (2022-9-3) GG
Advertisement
Advertisement
查看: 902|回复: 4

[VIC] 数学几何题求助! [复制链接]

发表于 2024-12-17 14:37 |显示全部楼层
此文章由 不是小胖子 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 不是小胖子 所有!转贴必须注明作者、出处和本声明,并保持内容完整
本帖最后由 不是小胖子 于 2024-12-17 15:39 编辑

三角形ABC中,三条高如图交于点H,∠A的平分线AF依次交两条高BM、CN于D、E。
XE、XD为三角形DEH外接圆的切线。
K在BM上,且XK=XD。
L为CX与AH的交点。
求证:KL⊥AH。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
Advertisement
Advertisement

发表于 2024-12-17 21:24 |显示全部楼层
此文章由 管閒事的路人 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 管閒事的路人 所有!转贴必须注明作者、出处和本声明,并保持内容完整
本帖最后由 管閒事的路人 于 2024-12-18 02:49 编辑


大概:
設 <EKD = b, KDE = a, <BAF = <CAF = c 然後:
(1) <EDH= a+b
(2) <EDH+<DAM = 90
(3) a+b+c = 90
考慮圓心在X,通過E,D,K的圓
(4) <KXD = 2a
(5) <DXE = 2b
考慮等邊三角形EXK, (3), (4), (5),得
(6)<XEK = c
(7)<XED = a + c
因XE是切綫,
(8)<EHD = a+c
考慮四邊形ANHM,得
(9)<EHD = <NAM = 2a
(8),(9) 得
(10) a = c
<DEH = <NEA = 90 - <EAN = 90 - a = a+b
<KEH = a + a + b = 90
KE 和CN垂直。

於AG上選點L' 讓 KL' 和AG垂直。
顯然 K,X,E,H,L' 共圓
XL'K = XKE = a

然後 HKL‘ 和 HBG 相似, HKE 和 HBN 相似
得 HE : EN = HK: KB = HL':L'G
CHG 和 AHN 也相似
結合以上兩點可得 CL'G 和AEN 也相似
<L'CG = <EAN = a = <XL'K
因<XL'K = <L'CG, 而且 KL' 和CG平行,得出 XL'C是直綫,所以L’就是L
證畢





评分

参与人数 1积分 +4 收起 理由
不是小胖子 + 4 偶对你的景仰如滔滔江水

查看全部评分

发表于 2024-12-17 21:25 |显示全部楼层
此文章由 管閒事的路人 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 管閒事的路人 所有!转贴必须注明作者、出处和本声明,并保持内容完整
哪來的題目?

发表于 2024-12-17 23:57 |显示全部楼层
此文章由 不是小胖子 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 不是小胖子 所有!转贴必须注明作者、出处和本声明,并保持内容完整

儿子的作业。老父亲已经搞不定了

感谢解答 ,逻辑看懂了,明天仔细确认下严密性,太晚精力无法集中了。

发表于 2024-12-18 06:41 来自手机 |显示全部楼层
此文章由 管閒事的路人 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 管閒事的路人 所有!转贴必须注明作者、出处和本声明,并保持内容完整
這學校牛。。。

发表回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Advertisement
Advertisement
返回顶部